Interdisciplinary research: Easier said than done

Rudi Balling Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg rudi.balling@uni.lu

٠	٠	٠	٠	٠	
٠	٠	٠	٠	٠	•
•	•	٠	٠	•	•
•	•	L	С	S	B
٠	٠	٠	٠	•	•
	•	•	•	•	•

Interdisciplinarity: Easier said than done

Mathematicians

"The art is in the leadership"

insight commentary

Organizational challenges in clinical genomic research

Jill S. Altshuler¹ & David Altshuler²

¹AltshulerGray LLC, 61 Dean Road, Brookline, Massachusetts 02445, USA (e-mail: jill@altshulergray.com) ²Departments of Genetics and Medicine, Harvard Medical School and Masschusetts General Hospital, and Broad Institute, 55 Fruit Street, Wellman 8, Boston, Massachusetts 02114, USA (e-mail: altshuler@molbio.mgh.harvard.edu)

Genome sequence data are enabling clinical genomic investigation, in which the characteristics of human patients are explored using comprehensive inventories of biomolecules. Successful investigators must navigate rapid technological change, collect and analyse large volumes of data, and engage systems of clinical care. Such projects will increasingly rely on fully integrated multidisciplinary teams, demanding new organizational models in academic biomedical research.

"Put the success of the group over the success of the individual"

In recruiting for such teams, disciplinary excellence is not the sole criterion.

Individuals must be flexible and open-minded, have good communication and social skills,

and be willing to work with others in pursuit of a common goal.

Distance matters...

• L C S B

Communication across disciplines

Allen & Henn 2007

How about a "Mini-sabbatical" ?

The challenges in interdisciplinary teams

commentary

Social engineering for virtual 'big science' in systems biology

Hiroaki Kitano, Samik Ghosh & Yukiko Matsuoka

A new type of big science is emerging that involves knowledge integration and collaboration among small sciences. Because open collaboration involves participants with diverse motivations and interests, social dynamics have a critical role in making the project successful. Thus, proper 'social engineering' will have greater role in scientific project planning and management in the future.

• L C S B

Learning from Ecology

Available online at www.sciencedirect.com

Critical transitions in chronic disease: transferring concepts from ecology to systems medicine

Christophe Trefois¹, Paul MA Antony¹, Jorge Goncalves², Alexander Skupin^{3,4} and Rudi Balling¹

Curr. Opin.Biotechn. 2015 Aug;34:48-55. doi: 10.1016/j.copbio.2014.11.020. Epub 2014 Dec 10.

Can we identify early warning signals

for disease transitions?

Critical Transitions in Nature and Society

Marten Scheffer

Vol 461|3 September 2009|doi:10.1038/nature08227

nature

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.

COMPLEX SYSTEMS

Foreseeing tipping points

Theory suggests that the risk of critical transitions in complex systems can be revealed by generic indicators. A lab study of extinction in plankton populations provides experimental support for that principle. SEE LETTER P. 456

MARTEN SCHEFFER

MARTEN SCHEFFER

of a tipping point are based on the idea that,

provides experimental support for that principle. SEE LETTER R 450

Early warning signals

The next generation of biomarkers

- More than mean and variance -

PNAS | November 26, 2013 | vol. 110 | no. 48 | 19181–19182

Thermodynamically inspired classifier for molecular phenotypes of health and disease

Marc T. Facciotti¹

OMMENTARY

Department of Biomedical Engineering and Genome Center, University of California, Davis, CA 95616

irrespective of their abundance and thus potential influence on cellular state.

Critical transitions in cell differentiation

RESEARCH ARTICLE

Cell Fate Decision as High-Dimensional Critical State Transition

Mitra Mojtahedi^{1,2®}, Alexander Skupin^{2,3®}, Joseph Zhou², Ivan G. Castaño^{1,4}, Rebecca Y. Y. Leong-Quong¹, Hannah Chang⁵, Kalliopi Trachana², Alessandro Giuliani⁶, Sui Huang^{1,2}*

Critical transitions in cell differentiation

$$I_{C}(t) = \frac{\langle |R(\boldsymbol{g}_{i}, \boldsymbol{g}_{j})| \rangle}{\langle R(\boldsymbol{S}^{k}, \boldsymbol{S}^{l}) \rangle}$$

Mojtahedi et al. PLOS Biol. 2016

Dynamical network biomarkers

SUBJECT AREAS:

COMPUTATIONAL BIOLOGY

BIOINFORMATICS

Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers

CANCER MODELS Luonan Chen^{1,2}, Rui Liu², Zhi-Ping Liu¹, Meiyi Li¹ & Kazuyuki Aihara²

(Chen et al., Scientific Reports 2012)

RESEARCH ARTICLE

Quantifying critical states of complex diseases using single-sample dynamic network biomarkers

Xiaoping Liu $^{1,2,3,4 \exp t},$ Xiao Chang $^{1,2 \exp t},$ Rui Liu 5, Xiangtian Yu 3, Luonan Chen $^{1,3,6*},$ Kazuyuki Aihara 1*

1 Institute of Industrial Science, the University of Tokyo, Tokyo, Japan, 2 College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, China, 3 Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 4 School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China, 5 School of Mathematics, South China University of Technology, Guangzhou, China, 6 School of Life Science and Technology, ShanghaiTech University, Shanghai, China

Dynamical Network Biomarkers

as early warning signals

Using Gene Variation and Correlation

as an early warning signal

Luonan Cheng et al.

Identifying critical transitions from EHR-data

RESEARCH ARTICLE

Defining and characterizing the critical transition state prior to the type 2 diabetes disease

Bo Jin¹^e, Rui Liu^{2,3}^e, Shiying Hao^{2,4}^e, Zhen Li^{2,5}^e, Chunqing Zhu¹, Xin Zhou⁶, Pei Chen⁷, Tianyun Fu¹, Zhongkai Hu², Qian Wu⁸, Wei Liu⁸, Daowei Liu⁸, Yunxian Yu⁹, Yan Zhang^{2,10}, Doff B. McElhinney^{2,4}, Yu-Ming Li⁶, Devore S Culver¹¹, Shaun T. Alfreds¹¹, Frank Stearns¹, Karl G. Sylvester², Eric Widen¹, Xuefeng B. Ling^{2,4,12}*

Method

We applied the transition-based network entropy methodology which previously identified a dynamic driver network (DDN) underlying the critical T2DM transition at the tissue molecular biological level. To profile pre-disease phenotypical changes that indicated a critical transition state, a cohort of 7,334 patients was assembled from the Maine State Health Information Exchange (HIE). These patients all had their first confirmative diagnosis of T2DM between January 1, 2013 and June 30, 2013. The cohort's EMRs from the 24 months preceding their date of first T2DM diagnosis were extracted.

Results

Analysis of these patients' pre-disease clinical history identified a dynamic driver network (DDN) and an associated critical transition state six months prior to their first confirmative T2DM state.

Gene Variation and Correlation at transition points

Can we use system-immanent ratio's

to describe the state of a disease?

$$I_{C}(t) = \frac{\langle |R(\boldsymbol{g}_{i}, \boldsymbol{g}_{j})| \rangle}{\langle R(\boldsymbol{S}^{k}, \boldsymbol{S}^{l}) \rangle},$$

Mojtahedi et al.

• L C S B

Immunometabolism as a potential switch-point in Parkinson`s disease

ARTICLE

Received 13 Aug 2014 | Accepted 19 Feb 2015 | Published 26 Mar 2015

DOI: 10.1038/ncomms7692

OPEN

PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

Nikolaos Patsoukis^{1,2,3}, Kankana Bardhan^{1,2,3}, Pranam Chatterjee^{1,2,3}, Duygu Sari^{1,2,3}, Bianling Liu^{1,2,3}, Lauren N. Bell⁴, Edward D. Karoly⁴, Gordon J. Freeman⁵, Victoria Petkova^{1,2,3}, Pankaj Seth^{2,3,6}, Lequn Li^{1,2,3} & Vassiliki A. Boussiotis^{1,2,3}

Modules in Metabolism

SB

. . . .

Can we identify meaningful ratio`s that provide

information on robustness and fragility?

• L C S B

A central role of DJ-1/Park7 in energy metabolism

Egle Daniveluce, He Feng et al. (unpublished)

DJ-1 directly binds PHDB

Insulin resistance, diabetes

and neurodegeneration

Is Parkinson disease the Diabetes of the brain?

Epidemiology/Health Services Research ORIGINAL ARTICLE

Diabetes and the Risk of Developing Parkinson's Disease in Denmark

Eva Schernhammer, md^{1,2,3} Johnni Hansen, phd⁴ Kathrine Rugbjerg, phd⁴ Lene Wermuth, md⁵ Beate Ritz, md⁶

OBJECTIVE—Insulin contributes to normal brain function. Previous studies have suggested associations between midlife diabetes and neurodegenerative diseases, including Parkinson's disease. Using Danish population registers, we investigated whether a history of diabetes or the use of antidiabetes drugs was associated with Parkinson's disease.

RESEARCH DESIGN AND METHODS—From the nationwide Danish Hospital Register hospital records, we identified 1,931 patients with a first-time diagnosis of Parkinson's disease between 2001 and 2006. We randomly selected 9,651 population control subjects from the Central Population Registry and density matched them by birth year and sex. Pharmacy records comprising all antidiabetes and anti-Parkinson drug prescriptions in Denmark were available. Odds ratios (ORs) were estimated by logistic regression models.

RESULTS Having diabetes, as defined by one or more hospitalizations and/or outpatient visits for the condition, was associated with a 36% increased risk of developing Parkinson's disease (OR 1.36 [95% CI 1.08–1.71]). Similarly, diabetes defined by the use of any antidiabetes medications was associated with a 35% increased Parkinson's disease risk (1.35 [1.10–1.65]). When diabetes was defined as the use of oral antidiabetes medications, effect estimates were stronger in women (2.92 [1.34–6.36]), whereas when diabetes was defined as any antidiabetes drug prescription, patients with early-onset Parkinson's disease were at highest risk (i.e., Parkinson's disease diagnosed before the age of 60 years; 3.07 [1.65–5.70]).

normal brain function, and insulin resistance may lead to neurodegenerative disease, as suggested by a large study (3) that reported a higher incidence of Alzheimer's disease in men who developed diabetes in midlife, particularly those without the apolipoprotein $E\epsilon 4$ allele known to increase the risk of Alzheimer's disease.

A number of previous observational studies (2,4–16) have evaluated the association between diabetes and Parkinson's disease and provided mixed results ranging from protective to no or positive associations. The aim of this specific analysis was to examine whether a history of diabetes and, as such, insulin resistance is linked to Parkinson's disease. Adding to previous literature, ours is the first and largest study to examine whether the type of treatment with antidiabetes drugs differentially affects the risk of developing Parkinson's disease. Our investigation was based on a large population-based

We need to systematically identify and classify critical transitions in disease pathogenesis

CrossMark

PNAS 112, Oct. 12, 2015

Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models

Sybren Drijfhout^{ala,1}, Sebastian Bathiany^{c,d}, Claudie Beaulieu^b, Victor Brovkin^d, Martin Claussen^{d,e}, Chris Huntingford^f, Marten Scheffer^c, Giovanni Sgubin^g, and Didler Swingedouw^h

*Resent and Development, Westher and Cimster Modeling, Isoyal Netherlands Meteorological Institute, 3730AL De Bit, The Netherlands Oceanograph, Conter Southampton, University of Southampton, Southampton 2016 3120, United Kangdon; "Department of Environmental Sciences, Wageringen University, STABBY Wageningen, The Netherlands," "The Land's the Land's System, Max Reack Institute for Meteorology, 2014 Science 2014, Science 2014 Science 2014, Scie

- 1. Thresholds
- 2. Upper and lower bounds
- 3. Slopes
- 4. Types of transitions
- 5. Underlying mechanisms

- LCS

Physics meets Biology

QB

Quantitative Biology 2013, 1(1): 50–53 DOI 10.1007/s40484-013-0002-6

PERSPECTIVE

Stochastic physics, complex systems and $\ensuremath{\mathsf{biology}}^\$$

Hong Qian*

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA * Correspondence: hqian@u.washington.edu

Received September 30, 2012; Revised November 18, 2012; Accepted December 7, 2012

• L C S B

Physics meets Biology

14 January 1999 Volume 397 Issue no 6715

Can physics deliver another biological revolution?

Cultural, institutional, conceptual and linguistic barriers are being overcome as physicists and biologists recognize the scientific stimulus they can gain from each other. The United States is showing the way.

Control Theory:

Information Theory:

Computational Complexity:

Dynamic Systems:

Statistical Physics:

Feedback, Optimisation, Games

Entropy, Coding

Decidability, P-NP

Stability, Bifurcation, Chaos

Phase Transitions, Critical Phenomena

