Disease Progression Aspects

AD and PD Progression Models

Meemansa Sood AETIONOMY Final Symposium 29th Nov 2018 Bonn, Germany

Mission

To increase knowledge of the causes of Alzheimer's and Parkinson's Disease by generating a mechanism-based taxonomy; to validate the taxonomy in a prospective clinical study that demonstrates its suitability for identifying patient subgroups (based on discrete disease mechanisms); to support future drug development and lay the foundation for improved identification and treatment of patient subgroups currently classified as having AD or PD.

Introduction

Pathways and BEL mechanistic models have no time dimension \geq

SCAI

Introduction

Challenges:

- > Understand disease progression (over time) at a mechanistic level
- Multiscale level data: temporal interdependency

Crosstalk between IMI Projects: EPAD

- > Target the disease at early stage
- Trial infrastructure for prevention trials
- Trigger to the longitudinal aspects, prompted us to look at the time dimension

Introduction

Challenges:

- > Understand disease progression (over time) at a mechanistic level
- > Multiscale level data: temporal interdependency

Hypothetical Model

etpia

🜌 Fraunhofer

SCAI

AETIO MOY

innovative medicines initiative

Reality Check

Hypothetical Model vs. Reality

Fundamental Question:

Do ADNI biomarkers show the same trajectories like the hypothetical model published for AD?

Longitudinal Model

> Computation of Trajectories: Individual biomarkers in ADNI data

etpia

🜌 Fraunhofer

SCAI

AETIO MO MY

innovative medicines initiative

http://epad.scai.fraunhofer.de/longitudinal-adni

Hypothetical Model: Computable

http://epad.scai.fraunhofer.de/longitudinal-adni

ta (in

e

AETIO MOY

Computation of Trajectories

AD pathological cascade model based on ADNI data

e

http://epad.scai.fraunhofer.de/longitudinal-adni

Computation of Trajectories

et

SCAI

pia

AETIO MOY

innovative medicines initiative

http://epad.scai.fraunhofer.de/longitudinal-adni

Challenges:

- Understand disease progression (over time) at a mechanistic level
- > Multiscale level data: temporal interdependency

Longitudinal Bayesian Modeling

- Represents conditional dependency over time
- Resource to represent ADNI and PPMI in a graph model
- Allows for risk modelling
- Association of mechanistic models with patient level graph models

AETIO NO

innovative medicines

nitiative

innovative medicines initiative

Bayesian Network Structures Reflect Expected Causal Associations

etpia

Application: Virtual Dementia Cohort (VDC)

 Classifier cannot detect virtual patients significantly better than chance level

> innovative medicines initiative

AETIO

Application: Simulating a VDC with an Intervention

- Shift of diagnoses towards more healthy outcomes
 - Moving cognition scores to median normal scores shows
- Our approach allows for simulating "what-if" scenarios

efpia

Conclusion and Future Outlook

Longitudinal Trajectory Model:

- Reality check between hypothetical model and ADNI
- Provides interoperability between real data and hypothetical model by normalizing the axes
- Will serve as a common metric to include trajectories from other studies like AddNeuroMed and AIBL

* Sood et al. "Longitudinal Data Modeling as an Approach to Enable the Prediction of Biomarker Trajectories for Alzheimer's Disease", Journal of Alzheimer's disease : JAD, 2018. (in preparation)

Conclusion and Future Outlook

Longitudinal Bayesian Modeling:

- Represents complex clinical datasets in longitudinal conditional graph models
- > Will be used for mechanism enrichment
- First approach for realistic simulation of virtual clinical subject trajectories across multiple biological scales and data modalities

*Sahay and Sood et al. "Realistic Simulation of Virtual Multi-Scale, Multi-Modal Patient Trajectories using Bayesian Networks and Sparse Autoencoders", Scientific Reports, Nature, 2018 (In preparation)

Acknowledgement

Prof. Dr. Martin Hofmann-Apitius

Longitudinal Trajectory Model

Dr. Marc Jacobs

Longitudinal Study Viewer

Sven Hodapp & Aliaksandr Masny

Bayesian/ Virtual Cohorts

Prof. Dr. Holger Fröhlich & Akrishta Sahay & Reagon Karki

Thank you

