
Mission 

To increase knowledge of the causes of Alzheimer´s and 
Parkinson´s Disease by generating a mechanism-based 
taxonomy; to validate the taxonomy in a prospective 
clinical study that demonstrates its suitability for 
identifying patient subgroups (based on discrete disease 
mechanisms); to support future drug development and 
lay the foundation for improved identification and 
treatment of patient subgroups currently classified as 
having AD or PD.
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Challenges:

 Understand disease progression (over time) at a mechanistic level

 Multiscale level data: temporal interdependency

Introduction



Crosstalk between IMI Projects: EPAD

 Target the disease at early stage

 Trial infrastructure for prevention trials

 Trigger to the longitudinal aspects, prompted us to look at the time 
dimension
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“Update on hypothetical model of Alzheimer’s disease biomarkers,” Lancet neurology, vol. 12, no. 2, p. 207, 2013.

Hypothetical Model



Reality Check

Age Age



Fundamental Question: 

 Do ADNI biomarkers show the same trajectories like the
hypothetical model published for AD?

Hypothetical Model vs. Reality 



Longitudinal Model
 Computation of Trajectories: Individual biomarkers in ADNI data

http://epad.scai.fraunhofer.de/longitudinal-adni



Hypothetical Model: Computable

http://epad.scai.fraunhofer.de/longitudinal-adni



Computation of Trajectories

http://epad.scai.fraunhofer.de/longitudinal-adni



Computation of Trajectories

http://epad.scai.fraunhofer.de/longitudinal-adni
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 Understand disease progression (over time) at a mechanistic level

 Multiscale level data: temporal interdependency



Longitudinal Bayesian Modeling

Definition of variable 
groups and 
constraints

• Define possible
edges

• Dimensionality
reduction via 
sparse
autoencoders

Modeling of missing
values

• Multiple imputation
• Auxiliary variables

Data discretization

• Decision trees

BN structure learning

• Algorithms:
• Hill climbing
• MMHC
• MMPC
• RSMAX2
• SI-HITON-PC

Parameter learning

• Dirichlet prior

 Represents conditional dependency over time

 Resource to represent ADNI and PPMI in a graph model

 Allows for risk modelling

 Association of mechanistic models with patient level graph models



Bayesian Network Structures Reflect Expected
Causal Associations
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Application: Virtual Dementia Cohort (VDC)

Simulate
patients from BN

Weighted RF 
classifier: reject

outliers

 Generative        virtual patient cohorts

 Iterate until desired number
of virtual subjects have been drawn:

 Classifier cannot detect virtual patients
significantly better than chance level



Application: Simulating a VDC with an 
Intervention

 Shift of diagnoses towards more 
healthy outcomes

 Our approach allows for simulating 
“what-if” scenarios

 Moving cognition scores to median 
normal scores shows



Conclusion and Future Outlook
Longitudinal Trajectory Model:

 Reality check between hypothetical model and ADNI

 Provides interoperability between real data and hypothetical model by 
normalizing the axes

 Will serve as a common metric to include trajectories from other 
studies like AddNeuroMed and AIBL

* Sood et al. “Longitudinal Data Modeling as an Approach to Enable the Prediction 
of Biomarker Trajectories for Alzheimer’s Disease”, Journal of Alzheimer's disease : 
JAD, 2018. (in preparation) 



Conclusion and Future Outlook
Longitudinal Bayesian Modeling:

 Represents complex clinical datasets in longitudinal conditional graph 
models

 Will be used for mechanism enrichment

 First approach for realistic simulation of virtual clinical subject 
trajectories across multiple biological scales and data modalities 

 Method could be used to build virtual cohorts across different disease 
areas that can be shared with the larger research community

*Sahay and Sood et al. “Realistic Simulation of Virtual Multi-Scale, Multi-Modal Patient Trajectories 
using Bayesian Networks and Sparse Autoencoders”, Scientific  Reports, Nature, 2018  (In 
preparation)
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