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Abstract

Background: The complexity of representing biological systems is compounded by an ever-expanding body of
knowledge emerging from multi-omics experiments. A number of pathway databases have facilitated pathway-centric
approaches that assist in the interpretation of molecular signatures yielded by these experiments. However, the lack of
interoperability between pathway databases has hindered the ability to harmonize these resources and to exploit their
consolidated knowledge. Such a unification of pathway knowledge is imperative in enhancing the comprehension and
modeling of biological abstractions.

Results: Here, we present PathMe, a Python package that transforms pathway knowledge from three major pathway
databases into a unified abstraction using Biological Expression Language as the pivotal, integrative schema. PathMe is
complemented by a novel web application (freely available at https://pathme.scai.fraunhofer.de/) which allows users to
comprehensively explore pathway crosstalk and compare areas of consensus and discrepancies.

Conclusions: This work has harmonized three major pathway databases and transformed them into a unified schema
in order to gain a holistic picture of pathway knowledge. We demonstrate the utility of the PathMe framework in: i)
integrating pathway landscapes at the database level, ii) comparing the degree of consensus at the pathway level, and
iii) exploring pathway crosstalk and investigating consensus at the molecular level.

Keywords: Bioinformatics, Pathways, Database integration, Network analysis, Biological networks, Biological
expression language

Background
The interpretations of molecular signatures that are typic-
ally yielded by genome-scale experiments are often sup-
ported by pathway-centric approaches through which
mechanistic insights can be gained by pointing at a set of
biological processes. Thus, parallel to the development of
novel data-driven approaches, pathway databases emerged
as comprehensive resources that could be used to comple-
ment analyses with prior knowledge. These resources have
embraced standard file formats and schemata in order to
facilitate the exchange of pathway knowledge. However,
each resource has chosen a different one and though these
formats possess overlapping capabilities to produce com-
putational models of biology, their intended purposes and

applications are somewhat distinct. For instance, Systems
Biology Markup Language (SBML) is a standard for the
representation of computational models of systems biol-
ogy, Systems Biology Graphical Notation (SBGN) facili-
tates the storage and exchange of signaling pathways,
metabolic networks and gene regulatory network informa-
tion, and Biological Pathway Exchange (BioPAX) has been
designed with the purpose of establishing a common ex-
change format for biological pathway data [12, 25, 31]. A
variety of formats offer the scientific community multiple
approaches to curate pathway knowledge. However, a
multitude of diverse formats and a lack of interoperability
between them tends to hamper efforts to collate the
knowledge contained in pathway databases. In practice,
this has led to the generation of data silos derived from
the gradual detachment of complementary work from
different research groups which use distinct modeling lan-
guages. Therefore, metadatabases such as Pathway Com-
mons [9] and ConsensusPathDB [26], which incorporate
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several different primary resources in their data ware-
houses, and integrative software applications such as
graphite [37] and OmniPath [41] have been created with
the primary intention to integrate pathway knowledge
from multiple databases. Beyond these, other approaches
such as those taken in PathCards [4], RaMP [45], and
ComPath [14], have focused on integrating gene sets and
chemical knowledge related to pathways, but without in-
cluding their topological information (i.e, relationships
were excluded from the network). For instance, ComPath,
the precursor of this work, harmonized pathway informa-
tion at the gene level in order to conduct extensive man-
ual curation that mapped and cross-referenced pathway
representations across databases. This mapping catalog re-
veals which pathways are covered by which database (e.g.,
pathway in resource X is equivalent to pathway in re-
source Y) and facilitates comparing the results of pathway
enrichment methods.
The representation of pathway knowledge can span sev-

eral scales including molecular events, cellular processes
and/or phenotypes, which are captured in varying degrees
by integrative resources. For example, ConsensusPathDB
and graphite effectively account for and harmonize metab-
olites, genes, and proteins when integrating pathways
from multiple databases, but exclude biological types at
higher order scales, such as biological processes, and other
entities, such as miRNAs. On the other hand, Pathway
Commons can incorporate multiple scales of biology by
retaining original entity identifiers; however, it does not
directly harmonize biological entities.
An ongoing challenge in harmonizing pathway re-

sources is the use of distinct nomenclatures by individual
databases. For example, for gene and gene products there
exist several standard terminologies such as ENTREZ
[32], UniProt [2], Ensembl [24], and HGNC [35], or for
chemicals, ChEBI [21], ChEMBL [18], and PubChem [6].
Despite the availability of standard terminologies, some
resources still assign biological entities and concepts to in-
ternal database identifiers. Therefore, mappers are neces-
sary to normalize identifiers and facilitate resource
harmonization (van [42]). Similarly, the harmonization of
biological relationships is required to unify heterogenous
networks. While several format translators can convert in-
teractions across formats [5, 7, 13, 20, 44], the process of
harmonizing relationships, or edges in pathway networks,
is not trivial; thus, hampering an integrative approach
comprising several databases.
Just as pathway databases should be regularly updated to

incorporate continual changes in pathway definitions, path-
way metadatabases should also be updated in parallel to re-
flect such changes; it has been shown that by using
outdated resources, results of studies are strongly influ-
enced, and follow-up studies are negatively impacted [43].
Correspondingly, approaches to harmonize pathway data

also require these considerations or they too would be sub-
ject to similar liabilities. Moreover, pathway analysis soft-
ware have been recently complemented with user-friendly
exploratory tools and applications such as Pathway Com-
mons, PathVisio [29], Cytoscape.js [17], or NDEx [36],
which have been specifically designed for the visualization
of individuals pathways and biological networks, including
at a finer, more granular level. While the scientific commu-
nity has greatly benefited from the development of these
tools, there is still the need to develop applications that
focus on visualizing the consensus and crosstalk between
multiple, disparate pathway representations. While previ-
ously mentioned attempts have succeeded in accumulating
and increasing the availability of database content, there
has not yet been a systematic evaluation that investigates
the degree of overlap or the amount of agreements/discrep-
ancies in related or equivalent pathways from different da-
tabases. Previous comprehensive comparisons of database
content were restricted to single or small sets of pathways
because of the considerable amount of manual intervention
(e.g., entity/relationship normalization, image reconstruc-
tion, etc.) required to shed light on the degree of overlap of
equivalent pathways [11, 39]. Conversely, conducting a sys-
tematic comparison requires harmonization of entities and
biological interactions across databases and minimizing
pathway information loss whilst accommodating databases
into an interoperable schema (i.e., retain most of the differ-
ent biological abstractions that each database offers in the
transformation process). Finally, connecting and integrating
pathway knowledge can enhance pathway enrichment ana-
lyses, as has already been demonstrated in a more simplistic
approach by Minadakis et al., as well as drive curation and
new experimentation by highlighting the consensus,
discrepancies, and unexplored areas of the pathway
landscape.
Here, we introduce PathMe, an extensible package that

harmonizes multiple databases using Biological Expression
Language (BEL) as a common interoperable schema and
enables pathway knowledge evaluation and exploration
powered by a stand-alone web application with a special
focus on highlighting pathway crosstalks and consensus.

Implementation
PathMe framework is comprised of two parts: the open-
source Python package that converts the different database
formats into BEL and the web application that allows for
the exploration of the resulting networks (Fig. 1).

The PathMe Python package
Integrating knowledge across pathway databases
Integrating pathway knowledge from multiple databases
first requires transforming the content of each database
into a common underlying schema. While multiple
triple-based formats can be used to formalize pathways
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in system biology, we adopted BEL as the pivotal unify-
ing schema since it provides a reasonable trade-off be-
tween expressivity and standardized organization. Until
now, we have implemented parsers for three major data-
bases (i.e., KEGG, Reactome, and WikiPathways [15, 27,
38]) that extract pathway information and serialize it to
BEL. As the principal goals of PathMe are to enable dir-
ect comparisons and explorations of pathways from dif-
ferent databases, cross-database mappings of identifiers
and relation types are required. Accordingly, the parsers
harmonize molecular entities to identifiers from stand-
ard nomenclatures as well as interaction types into their
corresponding BEL relationships.
In order to harmonize entities, we prioritized standard

nomenclatures for each of the modalities (e.g., genes, pro-
teins, metabolites, etc.) included in the three studied data-
bases (Additional file 1: Tables S1, S4, and S6). HGNC was
the top-level priority namespace for genes and gene prod-
ucts [35]. HGNC was selected as it is recognized as an au-
thority for standard nomenclature assignments and
annotations for human genes and because the software is
primarily concerned with converting human pathways. In
the absence of HGNC identifiers, lower level priority name-
spaces were used to derive the top level HGNC identifier
assignment. For instance, we aimed to use intermediate
level UniProt identifiers [2] to map back to HGNC identi-
fiers. If mappings to the prioritized namespaces were not
available, genes and gene products retained their database-
specific identifiers and were assigned to namespaces desig-
nated by their respective databases in order to maximize
the retrieval of entities from each resource. Similarly,
metabolites were prioritized to preferentially obtain ChEBI

identifiers because of ChEBI’s wide usage as a source of
manually curated stable identifiers and annotations for
small chemical compounds [21]. In their absence, either
PubChem identifiers were assigned or, once again, they
retained their database-specific identifiers. Once entities
were assigned to standardized identifiers, the modalities de-
fined by the source databases were mapped to their corre-
sponding BEL node classes (e.g., gene, protein, metabolite,
biological process, etc.). Efforts were made to accommodate
entities not readily mappable to BEL nodes by using BEL
node classes which can incorporate flexibility in their defi-
nitions. For instance, unspecified physical entities in Wiki-
Pathways are given the abstract class label, ‘DataNode’;
these ‘DataNodes’ were mapped to BEL abundances, a cat-
egory that represents the abundance of a biological entity
such as a chemical or an unspecified molecule. Entity class
mappings from the source databases to BEL are summa-
rized in Additional file 1: Tables S2, S5, and S7.
Similar to the normalization of biological entities into

a standardized nomenclature and their translation into
corresponding BEL entity classes, distinct relationships
utilized in the biological networks of different databases
must too be normalized. While the versatility of BEL
permitted the successful transformation of all relation-
ships from Reactome and WikiPathways, four KEGG re-
lationships (i.e., hidden compound, state change,
dissociation, and missing interaction) could not be trans-
lated into BEL due to the lack of correspondingly
equivalent edges in the BEL syntax. However, these four
relationships represent non-causal interactions between
biological entities and are also minimally utilized by
KEGG curators. Mappings between edges from the

Fig. 1 Design of the PathMe framework. The PathMe software package facilitates the transformation of pathway content into BEL. The initial step consists
of extracting, parsing, and/or querying content from each pathway database to retrieve entities, concepts, interactions and reactions, and their associated
metadata. Subsequently, database specific identifiers for all entities are unified to stable and consistent ones, where possible. Data are then directly
mapped into equivalent BEL nodes and edges, translating all human pathways from the databases into BEL. Finally, an interactive pathway viewer is
implemented such that any combination of pathways, represented as BEL networks, can be explored and the consensus surrounding pathway knowledge
can be directly compared
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source databases to BEL are reported in Additional file
1: Tables S3, S5 and, S7.

Implementation details
PathMe relies on the individual parsers that convert the
original formats from the databases to BEL. Each parser is
implemented using libraries that enable the manipulation
and transformation of its corresponding schemata (i.e.,
RDFLib for Resource Description Framework (RDF) and
the xml Python package for Extensible Markup Language
(XML)). Moreover, the parsers are structured into their
own packages inside the main Python module to facilitate
the inclusion of additional database parsers in the future.
During the entity normalization process, mappings across
identifiers are facilitated through the numerous packages
included in the Bio2BEL framework (https://github.com/
bio2bel) (Additional file 1: Table S9). After the
normalization, entities and their relationships in each
pathway are translated to BEL using the internal domain
specific language (DSL) and the BELGraph class of the
PyBEL Python software package [22]. PathMe benefits
from the numerous modules implemented in the PyBEL
ecosystem since it offers a variety of functionalities and al-
gorithms that enable querying, transforming, and analyz-
ing biological networks, as well as an export module that
can output multiple formats. Finally, PathMe is distributed
as a Python package through Python Package Index (PyPI)
and its source code is available in GitHub at https://
github.com/PathwayMerger/PathMe.

PathMe viewer
A web application to explore pathway knowledge
As discussed in the introduction, several visualization tools
have focused on the exploration of biological networks, but
have never attempted to study or evaluate the coverage,
consensus, and crosstalks across heterogeneous networks.
Since the particular use case of this work called for custom-
ized solutions (e.g., delineating boundaries or highlighting
agreements when multiple pathways are being visualized),
we also implemented a novel tool called PathMe Viewer to
fulfill these unmet needs and complement the PathMe
package. Since the target audience for this application are
pathway curators and researchers, we opted to implement
the viewer in the form of a user-friendly web application
compatible with any device. The front-end extends the vi-
sualizations from BEL Commons [23] and provides an in-
tuitive and interactive interface for visualizing and
exploring the knowledge comprised in the pathway land-
scape. Moreover, the web application is complemented with
analysis modules and network algorithms to query path-
ways or calculate their similarity as well as exporting
options to multiple standard formats such as BEL,
GraphML, or JSON so networks can be used in other soft-
ware designed for visualization purposes such as Cytoscape

[17] or advanced algorithmic analyses such as SPIA [40]. Fi-
nally, the network visualization is a stand-alone component
within the web application and it remains agnostic to BEL
by rendering the graphics using the Node-Link JSON data
format, a standard format used by popular visualization li-
braries; thus, facilitating the reusability of the component
out of the BEL community.

Implementation details
PathMe Viewer follows a model-view-controller (MVC)
software architecture. While the back-end is implemented
in Python using the Flask microframework, the front-end is
implemented in JavaScript using libraries such as jQuery
(https://jquery.com), D3.js (https://d3js.org), and Bootstrap
(https://getbootstrap.com). The source code is available at
https://github.com/PathwayMerger/PathMe-Viewer so that
all visualizations and components can be reused or ex-
tended by future applications. Furthermore, the web appli-
cation is distributed through PyPI and can also be deployed
with Docker which facilitates the reproducibility of this
work since Docker’s automated deployment process en-
sures that every single instance runs with the exact same
settings, regardless of the host machine. Documentation is
included in the GitHub repository and it is also accessible
through Read the Docs (https://pathme-viewer.readthe-
docs.io/en/latest/). Finally, we provide access to a public de-
ployment of the PathMe Viewer at https://pathme.scai.
fraunhofer.de.

Calculating pathway similarity
As an application of the software, we conducted the follow-
ing protocol to evaluate the degree of overlap between the
three representations of each equivalent pathway (Case sce-
nario II). We used a variation of the Szymkiewicz–Simp-
son/Overlap coefficient (Eq. 1), calculated for common
molecular nodes shared between the networks. To calculate
a pathway similarity index, we summed the three coeffi-
cients obtained for each individual pairwise comparison
and divided this number by three to normalize to a
zero-to-one scale. In other words, each pathway similarity
index corresponds to a normalized sum of the individual
overlaps between: i) the KEGG and Reactome representa-
tion, ii) the KEGG and WikiPathways representations, and
iii) the Reactome and WikiPathways representations.
Therefore, the pathway similarity index (S) lies between 0 ≤
S ≤ 1 (with 0 corresponding to no overlap between any of
the three sets, and 1 corresponding to three fully overlap-
ping sets).

S X;Yð Þ ¼ j X∩Y j
min jXj; jY jð Þ ð1Þ

Equation 1 The Szymkiewicz-Simpson coefficient cal-
culates the similarity between two sets (X and Y) where
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0 ≤ S ≤ 1. The similarity is the size of the intersection of
the two sets divided by the size of the smaller set. In this
case, the sets correspond to the number of individual
molecular entities excluding group nodes in the BEL
graph, this is discussed in detail in the Additional file 1.

Results
In the first two sections, we present the main functional-
ities of the PathMe software and web application re-
spectively, while the following section outlines the
architecture and design of the framework. Next, three
case scenarios applied at increasingly granular scales of
pathway knowledge are presented to illustrate the usabil-
ity of the framework in database integration from a glo-
bal, database-wide perspective to a detailed, path way
level one.

PathMe functions
The PathMe package offers a set of functionalities for the
set of databases incorporated thus far: i) download the raw
pathway files, ii) generate BEL networks and export them
as binary data, iii) summarize the transformed content,
and iv) calculate detailed network statistics (e.g., number
of nodes, edges and their types) (Table 1). Moreover, data-
base specific features include functionalities to flatten all
group nodes (e.g., protein complexes, gene families, etc.)
in KEGG and exclusively parse canonical pathways from
WikiPathways and Reactome. In conclusion, these func-
tionalities combined with the ones already offered by the
PyBEL ecosystem assist bioinformaticians in transforming,
exploring, and analyzing the generated pathway networks.

PathMe viewer
Beyond the software concerned with the integration of
pathway knowledge, a novel web application (i.e. PathMe
Viewer) was implemented for intuitive querying, brows-
ing, and navigating of the normalized BEL networks.
Queries can be submitted for a single or a set of pathways
on the main page of the viewer, as illustrated in Fig. 2a.
The result of the query leads to a visualization, as seen in
Fig. 2b, that renders the corresponding network.
The PathMe Viewer is powered by multiple, built-in

functionalities enabling users to navigate through the
pathway(s). Although the initial network layout is de-
fined by the D3 force algorithm which enables users to

get a comprehensive overview of the relevant parts of
the network, the network arrangement can also be cus-
tomized by dragging and moving nodes around the
viewer. Furthermore, node and edge meta-information
can be accessed via double click. For nodes, this includes
specifications on their name, function and namespace,
while for edges, the pathway name, identifier and source
database are provided. When multiple pathways are
queried, marked boundaries delineate the topological
landscape of each of the networks which synergistically
contribute to the consolidated one to facilitate the ex-
ploration of pathway crosstalks (i.e. the interaction of
pathways through their sharing of common entities)
(Fig. 2b). Furthermore, search and mining tools enable
navigation of the resulting network such as selecting and
filtering nodes/edges or calculating paths. Another novel
feature of the viewer is the automatic identification of
contradictory and consensus relationships across path-
ways (i.e., edges between identical nodes with equivalent
or opposite relationship), which are highlighted in blue/
red in the network. The viewer also incorporates a func-
tionality which collapses all BEL proteins, RNA species
and genes into gene nodes. This function was included
in the viewer because of the interchangeable usage of
these entities by the various databases which would both
preclude the ability to fairly establish if there is overlap
in the network topology and to conduct fair compari-
sons. Finally, network algorithms such as betweenness
centrality can be used to quickly identify central nodes
in the network or to calculate pathway similarity as we
will present in the case scenario.

Software development techniques
Successful contributions to the bioinformatics domain
are predicated by their ability to be replicated and
reused. In line with community standards designed to
foster these attributes, the PathMe and PathMe-Viewer
packages use git (https://git-scm.com) for version con-
trol on GitHub (https://github.com), flake8 (https://
github.com/PyCQA/flake8) to enforce code quality,
setuptools (https://github.com/pypa/setuptools) to build
distributions, pyroma (https://github.com/regebro/pyr-
oma) to enforce package metadata standards, sphinx
(https://github.com/sphinx-doc/sphinx) to build docu-
mentation, Read the Docs (https://readthedocs.org) to

Table 1 Core functions of the PathMe Python package

Function Description

Download Downloads the pathway files from the original source

BEL Converts the original pathway files to BEL

Summarize Presents global statistics of the total number of nodes and edges converted to BEL

Statistics Creates an excel sheet that summarizes the results of the BEL conversion for every pathway
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host documentation, pytest (https://github.com/pytest-
dev/pytest) as a unit and integration testing harness, and
Travis-CI as a continuous integration server to run each
of these with each commit (https://travis-ci.com/
PathwayMerger/PathMe and https://travis-ci.com/
PathwayMerger/PathMe-Viewer). Each package is dis-
tributed publicly through PyPI such that they can be in-
cluded in other Python projects with requirements.txt or
included in the setup.py using the install_requires setting
without the need for complicated build steps or any
other user configuration.
Because PathMe works on frequently updated external

pathway data from multiple sources, it must be re-run
frequently to incorporate those updates. Following the
recommendation from Kim et al. [28] for building repro-
ducible environments for bioinformatics, we have encap-
sulated the entire PathMe workflow of acquiring,
parsing, mapping, and normalizing the pathway re-
sources within a Docker container such that it can be
run on a cron job (i.e. a task scheduled to be re-run
periodically). After, these changes are incorporated into
the publicly available instance of the PathMe-Viewer.
The cron job has the additional benefit that it reports
when the formats of the underlying data change (which
happens with moderate frequency) so the relevant
PathMe components can be adapted. Also following the
recommendation from Kim et al. for the scientific aspect
of reproducibility, the three application scenarios pre-
sented in the next sections were conducted in IPython
notebooks that are available and documented on GitHub
(https://github.com/PathwayMerger/PathMe-Resources)
that illustrate useful commands that might serve to as-
sist similar future analyses.

Case scenario I: global entity comparison across pathway
databases
As a first application, we conducted a global comparison
of biological entities across major modalities (Fig. 3). We
would like to note that in order to ensure the quality of
the comparison presented in this case scenario, this ana-
lysis exclusively uses a highly cited and peer-reviewed
pathway set provided by WikiPathways (approximately
510) that has been approved and tagged for usability in
data analysis. While we attempted to maximize the re-
tention of biological entities, we found severe differences
in the level of overlap across resources which demon-
strates the importance of database integration to gain a
holistic picture of pathway knowledge.
The degree of consensus of biological entities across all

three databases was found to be relatively low, albeit vari-
able across the assessed modalities (Fig. 3). The propor-
tion of genes present in all databases was lower than the
results obtained by Stobbe et al. (15%), though they exclu-
sively focused their work on a set of metabolic pathways
present in five major databases which included KEGG and
Reactome. Total consensus of miRNAs in all three
databases was unsurprisingly low due to a disproportion-
ate representation of miRNA species across the databases.
Specifically, as few as 13 miRNAs were derived from Reac-
tome while 149 were present in KEGG. Similarly, the total
consensus for metabolites was grossly deficient at less
than 2%.
For partial overlap, we found that results varied across

the three modalities, with a higher degree of overlap be-
tween miRNA species at approximately 30%, followed by
genes with nearly 20%, and metabolites with approxi-
mately 11%. Accordingly, we found the proportion of

Fig. 2 a PathMe Viewer main page. b The merged mTOR signaling network from KEGG, Reactome, and WikiPathways visualized in the PathMe Viewer.
The highlighted regions mark the boundaries of each of the networks to definitively identify pathway landscapes, as defined by each of the
network sources
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distinct entities to be substantially higher than those
present in any two or all three databases. The particu-
larly low levels of overlap observed in all modalities can
be largely attributed to several factors:

1. The number of entities per modality across
databases is highly variable (Table 2). Per
definition, sets with significant variations in
cardinality (i.e., set size) limit the likelihood of
consensus since only a portion of the larger sets
can intersect with the smaller ones. For instance,
KEGG contains 4048 metabolites while
WikiPathways only contains 655. Accordingly,
the maximum number of metabolites that can
be common among them is limited to the number
of metabolites contained in WikiPathways
(i.e., 655). In this case, the maximum overlap
would be the total number of metabolites
contained in WikiPathways divided by the total
number contained in KEGG, or 16.18%. Thus,
the maximum degree of consensus between
databases can be constrained by databases
which contain fewer entities.

2. The scope of the pathways comprised in each
database varies. Each database places a distinct
emphasis on discrete aspects or regions of
biological pathways which tend to be defined
subjectively in the absence of standard
nomenclatures, as outlined by [14] who reported
only 21 equivalent pathways between the three

databases. Therefore, despite the presence of key
biological players in all three databases, the
majority of biological entities are particular to
a single database. For example, over 200 glycan
molecules are present in KEGG since this
resource contains multiple pathways related to
glycan metabolism (i.e., ‘Glycan biosynthesis and
metabolism’) while they are absent in the others.

3. Highly specific entity identifiers impede entity
mappings with major standard nomenclatures.
Some entity identifiers have no discernible mapping

Fig. 3 Overlapping entities across modalities in the three databases studied (i.e., KEGG, Reactome, and WikiPathways). The comparison analysis studied
the degree of overlap for three different biological entities (i.e., genes, metabolites, and miRNAs) to evaluate whether entities are shared across databases
(i.e., the ratio of the number of nodes present in all three databases to the number of nodes in the union of all databases for that modality), partially
overlap (i.e., the ratio of the number of nodes present in only two databases to the number of nodes in the union of all databases for that modality) or are
exclusive (i.e., the ratio of the number of nodes unique in one database to the number of nodes in the union of all databases for that modality). The
classification of entities by their corresponding modalities are described in Table 2. We would like to remark that the analysis accounted for every entity
present in the full set of pathways from the studied databases

Table 2 Pathway database content statistics. Each cell reflects the
unique number of entities for a given modality in its corresponding
database. The genes modality comprises genes, mRNAs, and gene
products as well as any modifications on those. The metabolites
modality comprises biological entities from small molecules to
cellular components. The miRNAs modality contains microRNA
molecules. Finally, nodes that correspond to other pathways,
molecular events, or biological processes (e.g., Gene Ontology (GO;
[8]) terms) are included in the biological processes modality. The
statistics reflect the status of the content available from KEGG and
WikiPathways from the 13th of March, 2019 and the latest
Reactome release (version 67) from the 13th of December, 2018

Modality KEGG Reactome WikiPathways

Genes 7289 8653 3361

Metabolites 4048 2712 655

miRNAs 149 13 91

Biological processes 418 2219 138
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to major standard nomenclatures because they
exhibit a high degree of specificity. This is
particularly evident for genes where curators have
also captured entities such as specific protein
events (e.g., “p-y641-stat6”), protein mutations
(e.g., “activated fgfr1 mutants”), protein families
(e.g., “lim kinases”), protein fragments (e.g., “ub
c-terminal hh fragments”), or splicing events
(e.g., “xbp1 mrna (spliced)”). A way to account for
these high granular cases would be to standardize
protein family names with resources such as Pfam
[16] or FamPlex [3]. For cases such as protein
fragments or events, BEL enables their
harmonization as they can be incorporated into
its syntax (e.g., BEL proteinModification(),
fragment(), variant(), etc.).

4. Biological modalities can be broadly defined.
We characterize modalities to correspond to
BEL node classes (Table 2). For instance, the
genes modality comprises gene, protein, and RNA
BEL nodes. While this modality is clearly defined,
there is a higher degree of variability in the entity
types that can be that can be classified with the
metabolites modality since the latter comprises a
broad range of abundance BEL nodes (i.e., small
molecules, cellular components, clinical
measurements, or categories that do not fit in
other BEL node classes; [34]). Without the use
of standard nomenclatures by the source databases,
an extensive manual effort would be required to
partition these modalities into more granular
classifications. For example, the usage of GO as
opposed to internally-defined terminologies to
define cellular components would enable the
categorization of cellular components into their
own distinct modality. Similarly, the biological
processes modality exhibits minimal overlap due
to a lack of usage of standardized ontologies
such as GO (Additional file 1).

Case scenario II: comparing equivalent pathways in the
three databases
Merging pathway knowledge enables analyzing the
crosstalks for any set of pathways through the PathMe
Viewer. As a case scenario, we used PathMe in con-
junction with the viewer to explore the knowledge
consolidated from 21 equivalent pathways across the
three databases previously curated by Domingo-Fer-
nández et al. (Table 3). While conducting a cross-data-
base pathway comparison previously required either
extensive manual curation or harmonization of both
entity identifiers and data formats on a case by case
basis, this example illustrates how PathMe can be

exploited to enable a systematic comparison of equiva-
lent pathways.
To evaluate the degree of overlap between the three

representations of each equivalent pathway, we used a
variation of the Szymkiewicz–Simpson coefficient calcu-
lated for the common molecular nodes between the net-
works (Eq. 1).
Each of the 21 equivalent pathways showed partial

overlap, except ‘Non-homologous end-joining’ which did
not contain the pathway information required to convert
the pathway into BEL in two of its original files. Among
the equivalent pathways with the highest degree of simi-
larity, we found well-studied pathways such as ‘Cell cycle’,
‘Toll-like receptor signaling’, ‘mTOR signaling’, Hedgehog
signaling’, and ‘Apoptosis’. Although the three databases
represent the most widely studied molecular players in
each of these pathways, merging their knowledge assists
in filling the gaps between the complex interactions occur-
ring in these pathways. Pathways with low similarity, such
as ‘TCA Cycle’ and ‘Sphingolipid Metabolism’, indicate the
resources captured distinct aspects of the biology within
the pathway. Unsurprisingly, this is in concordance with
the findings reported by Stobbe et al. who conducted a
comparison of the ‘TCA Cycle’ across five metabolic path-
way databases. We would like to note that while previous
approaches to characterize pathway similarity were purely
gene-centric, our approach includes not only gene sets,
but a range of modalities represented in pathways. Finally,
beyond harmonizing entities and concepts, PathMe also
harmonizes relationships, thus facilitating further analyses
where pathway topology is included, as shown in the next
case scenario.

Case scenario III: in-depth pathway analysis of mTOR
signaling after superimposing its multiple representations
As a further application of the framework, we used the
PathMe Viewer to conduct a detailed investigation of
the mammalian target of rapamycin (mTOR) signaling
pathway to demonstrate its utility in enriching pathway
knowledge. In Fig. 4, the consensus in terms of entity
overlap across equivalent mTOR signaling pathways
from each of the databases is depicted. All three data-
bases are complementary to the others, but also pos-
sess some degree of overlap and thus are neither
entirely identical nor distinct. Variability in the size of
the mTOR signaling pathway, as measured by the
number of nodes in each database, is also clearly dis-
cernible with KEGG contributing the largest propor-
tion of distinct nodes to the heterogeneous, merged
network (Fig. 4a).
A key functionality of PathMe Viewer is in the

visualization and interactive exploration of pathways. In
Fig. 5a and b, using the viewer, an in-depth analysis of
mTOR signaling reveals novel sets of interactions in
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the integrated network that are absent in individual
mTOR signaling networks. The role of AKT signaling
in modulating mTOR, as illustrated in 5a and sourced
from KEGG, has already been well-described in the lit-
erature [1, 33]. More notably, by superimposing the
mTOR signaling pathway as defined in KEGG with its
equivalent pathway from WikiPathways (Fig. 5b), an as-
sociation between AKT1 and insulin related-processes
becomes apparent in the merged network, though nei-
ther of the individual pathway sources connect the
downstream effects of mTOR on insulin signaling.
Nevertheless, the association between mTOR and insu-
lin signaling through AKT modulation has been previ-
ously described in the literature [30]. Additionally,
bidirectional effects of mTOR have been demonstrated
on AKT activity; these effects can vary both by the type
of mTOR complex involved in the pathway and by
negative feedback loops on insulin signaling, leading to
altered states of AKT activity [1, 30]. As such, both
pathways serve to complement each other in the inte-
grated network, unraveling a connection which was

hidden in disparate databases, though has been
well-studied in the literature. Recent studies have also
demonstrated that mTOR receives input from multiple
pathways [33]; a principal feature of the PathMe Viewer
is in its capacity to directly visualize pathway crosstalk.
While in the previous case scenario, crosstalk analyses
were performed across equivalent pathways, in this
case, using the viewer it would be possible to simultan-
eously visualize and explore different pathways which
are evidenced to, or are possibly involved in, crosstalk
with the mTOR signaling one.
Similarly, by superimposing the mTOR signaling

pathways from KEGG and WikiPathways, downstream
interactions between mTOR and mRNA translation via
EIF4EBP1 are evident (Fig. 5a and b). The inhibition of
mTOR has been noted to be a potent repressor of pro-
tein translation while mTOR activation can stimulate
mRNA translation through EIF4EBP1 [10, 19]. Though
only the inhibition relationship is captured in the
viewer, in the presence of an activation relationship, the
viewer also offers a feature to detect contradictory

Table 3 Consolidated pathway representations, their similarity indexes, and links to visualize the merged networks in the PathMe Viewer. A
detailed analysis with the scripts to replicate the results and comments on the identified overlaps for each of the 21 equivalent pathways is
available at https://nbviewer.jupyter.org/github/PathwayMerger/PathMe-Resources/blob/master/notebooks/case_scenarios/evaluating_
similarity_equivalent_pathways.ipynb

KEGG Reactome WikiPathways Pathway Similarity
Index

Cell cycle Cell Cycle Cell Cycle 0.70

Toll-like receptor signaling pathway Toll-Like Receptors Cascades Toll-like Receptor Signaling Pathway 0.62

mTOR signaling pathway mTOR signalling Target Of Rapamycin (TOR) Signaling 0.58

Hedgehog signaling pathway Signaling by Hedgehog Hedgehog Signaling Pathway 0.56

Apoptosis Apoptosis Apoptosis 0.43

IL-17 signaling pathway Interleukin-17 signaling IL17 signaling pathway 0.42

PI3K-Akt signaling pathway PI3K/AKT activation PI3K-Akt Signaling Pathway 0.42

Wnt signaling pathway Signaling by WNT Wnt Signaling Pathway 0.41

MAPK signaling pathway MAPK family signaling cascades MAPK Signaling Pathway 0.40

B cell receptor signaling pathway B Cell Receptor Signaling Pathway Signaling by the B Cell Receptor (BCR) 0.37

Pentose phosphate pathway Pentose phosphate pathway
(hexose monophosphate shunt)

Pentose Phosphate Pathway 0.33

Citrate cycle (TCA cycle) Citric acid cycle (TCA cycle) TCA Cycle 0.33

Synthesis and degradation of
ketone bodies

Ketone body metabolism Synthesis and Degradation of
Ketone Bodies

0.33

Notch signaling pathway Signaling by NOTCH Notch Signaling Pathway 0.29

DNA replication DNA Replication DNA Replication 0.28

Prolactin signaling pathway Prolactin receptor signaling Prolactin receptor signaling 0.28

TGF-beta signaling pathway Signaling by TGF-beta family members TGF-beta Signaling Pathway 0.26

Thyroid hormone synthesis Thyroxine biosynthesis Thyroxine (Thyroid Hormone) Production 0.20

Sphingolipid metabolism Sphingolipid metabolism Sphingolipid Metabolism 0.16

Mismatch repair Mismatch Repair Mismatch repair 0.08

Non-homologous end-joining Nonhomologous End-Joining (NHEJ) Non-homologous end joining 0
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edges (e.g., node A increases node B in one pathway
and decreases B in another) between identical nodes
across two databases.

Conclusions
Parallel developments of pathway databases during re-
cent decades have resulted in different formalization
schemas, hampering the interoperability between these

resources and creating data silos. Overcoming this obs-
tacle is instrumental to better understand the mecha-
nisms underlying pathway knowledge. Additionally,
while our approach can accommodate multi-scale path-
way information from divergent database formats into a
singular and standardized schema, a minority of entities
and interactions have no discernible equivalencies in
BEL and, as such, had to be omitted. For instance, so far

Fig. 4 Node overlap between the three pathway representations of mTOR signaling. Note that this analysis includes all modalities harmonized by PathMe
(e.g., genes, metabolites, miRNAs, biological processes). Particularly for mTOR signaling, while there are overlapping nodes between each pair of databases
and between all three, each database also contributes unique nodes to the consolidated mTOR signaling network, providing a more comprehensive
overview of mTOR signaling. In a), a more detailed analysis conducted on IPython notebooks shows the proportion of shared nodes across the three
equivalent representations. Equivalent interactive Venn diagrams can also be generated directly from the PathMe Viewer for any set of pathways, as
visualized in b)

Fig. 5 Superimposing mTOR signaling subgraphs from KEGG and WikiPathways. A deeper analysis performed using PathMe Viewer to visualize mTOR
signaling subgraphs can be seen highlighting interactions present in a KEGG only and b KEGG and WikiPathways. The contribution of WikiPathways onto
the pathway found in KEGG is highlighted in orange. Neither agreements nor discrepancies in topology are noted between these subgraphs though there
are overlapping genes (e.g., mTOR, RICTOR, EIF4EBP1, etc.). Instead, subgraph a) is complemented by additional interactions superimposed onto the
network, as visualized in subgraph b)
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PathMe parsers can extract information from both
humans and other species; however, despite the capacity
of PathMe to harmonize human identifiers, additional
work is required for the harmonization of identifiers be-
longing to other species as integration can help in iden-
tifying evolutionarily conserved genes and processes.
Here, we have presented a framework through which

content across multiple pathway databases can be inte-
grated and transformed into a unified schema. Although
PathMe currently only incorporates content from three
major pathway databases, its flexibility allows for future
inclusion of additional pathway databases. Moreover, it
holds the capacity to update its content and track devel-
opments in pathway knowledge, an issue earlier outlined
by Wadi et al.. Finally, the three case scenarios presented
illustrate how the framework can be used to assist re-
searchers in addressing biological questions at varying
degrees of specificity such as: i) integrating the pathway
landscape at the database level, ii) comparing the degree
of consensus at the pathway level, and iii) exploring
pathway crosstalk and studying consensus at the mo-
lecular level.
Ultimately, we have shown how integrating pathway da-

tabases and making them interoperable enables global
pathway representations that can contribute to a more
holistic overview of pathway knowledge than the know-
ledge contained in any single one of the databases. In the
future, these global representations could be used to
conduct more comprehensive pathway-centric analyses.
Furthermore, the reproducibility of previous pathway en-
richment analyses could also be evaluated by replicating
them using any database combination. In other words,
what would happen if, instead of KEGG, an identical ana-
lysis were to be performed using the Reactome or Wiki-
pathways databases, or any combination of the three?

Availability and requirements
Project name: PathMe
Project home page: https://github.com/PathwayMerger
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License: Apache License 2.0
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