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AETIONOMY is a consortium brought together under the European Innovative  Medicines 
Initiative to tackle the problem of the classification of neurodegenerative diseases. The 
diagnosis of Alzheimer dementia (AD) is based on a relatively nonspecific phenotype: 
progressive memory impairment associated with a pathological finding of amyloid 
plaques and neurofibrillary tangles. Similarly, for Parkinson disease (PD), the phenotype is 
a progressive movement disorder that is associated with damage to the substantia nigra 
and the presence of Lewy bodies. In both conditions, single-gene familial forms have 
highlighted heterogeneous biological pathways resulting in identical disease phenotypes. 
These pathways are highly likely to be involved in the sporadic forms of the disease, but 
their exact role and the molecularly driven subgroupings must be identified if we are to 
make progress in developing new therapies for these forms. AETIONOMY is systematically 
collecting publicly available and proprietary data. A semantic framework – a formalized 
representation of the essential knowledge on neurodegenerative diseases that is both 
computer-readable and understandable by humans – forms the backbone for all data 
retrieval and annotation. It will be mined to identify new molecularly defined subgroups of 
AD/PD patients.

As we do not believe that there is 
one path or one single modelling 
approach that is suited to deliver 
the candidate mechanisms that 
form the basis for the new 
taxonomy, we are applying 
different modelling strategies. 
A wide spectrum of mining 
strategies is supported by the 
AETIONOMY knowledge base, 
including causal reasoning (based 
on OpenBEL), graph mining and association mining via pathophysiology graphs. Candidate 
mechanisms that are causally involved in the aetiology of the disease and potentially 
useful as classification tools are identified by applying these mining approaches. Finally, 
AETIONOMY will validate a selection of candidate mechanisms (that bear the potential to 
establish a taxon in the new mechanism-based taxonomy), supported by our clinical study. 

The Consortium is jointly led by Doctor Phil Scordis from the biopharmaceutical company 
UCB Pharma SPRL, and Professor Martin Hofmann-Apitius, Fraunhofer Institute SCAI.

TOWARDS A MECHANISM-BASED 

TAXONOMY OF ALZHEIMER’S AND 

PARKINSON’S DISEASE

EDITORIAL
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COLLECTING KNOWLEDGE 

FROM LITERATURE AND DATA 

TO MAP THE KNOWLEDGE 

ABOUT ALZHEIMER‘S AND 

PARKINSON‘S DISEASE

DISEASE
MAPS

Scientists often describe biological processes in the form of pathways and chains of 
interactions between molecules. Most of this information is hidden in the unstructured 
text of scientific publications and need to be organized into computable models. Therefore 
scientific knowledge of physiological functions and pathological actions in disease were 
acquired from disease-related articles, reviews, and databases. Fraunhofer’s literature 
mining system ‘SCAIView Neuro’ was used to retrieve a list of genes, reported to be linked 
to a pathology, of which the top 100 genes were selected based on their relevancy to the 
query. Documents tagged for these genes were manually filtered for normal and disease 
states. Furthermore, In case of Alzheimer’s, documents related to top 10 AD related genes 
were obtained from the AlzGene Database. Additional documents are collected from 
the databases such as KEGG, Reactome and BioCarta, where the references for the each 
disease related pathway are used to extract knowledge. Manual curations and extractions 
of statements and their coding in the Biological Expression Language (BEL) is used to 
extract information and knowledge. Biological entities (indicated as subjects or objects) 
and relationships (as causal chains) reported in these scientific articles were encoded and 
. manually reviewed by experts. As a result of these approach and efforts Fraunhofer 
generated disease models for AD and PD. The following figures shows the AD BEL disease 
vs. healthy model:

•  The AD BEL model generated by Dr. Alpha Tom Kodamullil and team: 
35.266 citations and 44.437 BEL statements => 9.645 nodes and 10.251 edges.

• The PD BEL model generated by Reagon Karki and team: 
432 citations and 2.236 BEL statements => 1.424 nodes and 2.690 edges.
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As described published knowledge is organized into computable models. This is the 
basis for the essential activity in AETIONOMY to generate hypotheses about multiscale 
mechanisms of neuro-degenerative pathophysiology. Conceptually, we identified and 
organized disease specific features, at different scales, to perform data-driven analysis. 
This analysis serves to identify robust combinations of features that correspond to disease 
subtypes. The mechanisms of neurodegenerative pathophysiology, that distinguish the 
disease subtypes – referred to as our hypotheses – will be tested, iteratively elaborated 
and validated through data generated by apposite patient studies. In order to retrieve 
the main mechanisms involved in these neurodegenerative disorders, a list of pathways 
and mechanistic knowledge was extracted from PubMed using Fraunhofer’s information 
retrieval system ‘SCAIView Neuro’. This list was preprocessed and curated due to the 
large number of synonyms found in the literature leading to a final inventory of pathways 
and mechanisms, that served as a guideline for annotating each individual statement 
(triplet/assertion) in the disease models (Biological Expression Language - BEL). We also 
emphasized inclusion of all well-known mechanisms (e.g., amyloid cascade, neuro-
inflammation, mitochondrial dysfunction, …) as entries to our mechanism repository 
‘NeuroMMSig’. The next step was to individually annotate and evaluate all of the triplets 
in the models with their respective candidate mechanisms. During this process, we 
performed literature and database searches in order to find out, to which candidate 
mechanism the entities in each BEL statement belonged. This whole process results in 
a repository of computable disease specific mechanisms (126 for AD and 76 for PD) as 
shown below:

NEUROMMSIG – INVENTORY OF 

NEURODEGENERATIVE DISEASE 

MECHANISMS

MULTIMODAL 
MECHANISTIC    
SIGNATURES 
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Multimodal data is necessary in order to map biological entities to the clinical studies 
in neurodegeneration since they contain not only genetic markers, but variables from 
brain scans to neuro-psychological assessments. Conventional pathway analysis tools 
such as Gene Set Enrichment Analysis (GSEA)/Molecular signatures (MSIG), are limited to 
the molecular gene and in particular gene expression layer. In contrast, in our approach 
NeuroMMSig entries were enriched with imaging features, variant information Single 
Nucleotide Polymorphism (SNPs), miRNA, clinical studies, and drugs/chemicals, making 
them essentially multiscale and multimodal representations of candidate mechanisms. The 
complexity of mechanistic information represented enables NeuroMMSig to accept not 
only molecular (e.g., gene expression) information. As a consequence, the approach taken 
with NeuroMMSig is overcoming several of the limitations associated with conventional 
pathway analysis tools. In summary, NeuroMMSig comprises a candidate mechanism 
collection from the major neurological disorders, represents a high resolution and curated 
knowledge base incl. candidate mechanisms converted to computable networks (graphs). 
The procedure described above to build a repository of disease specific mechanisms was 
achieved within approximately 1 year of work for the AD model and 6 months of work 
for the PD due to their size. During this process, database models were created including, 
for instance, which entities were assigned to candidate mechanisms and other multimodal 
enrichment data.

NeuroMMSig Biological process example
 
Users should select candidate nodes based on their interest. From all data-mapped 
nodes to this selected node, candidate mechanisms (represented as a chain of causation 
or paths) are displayed in the „Candidate mechanism“ tab. Clicking in each candidate 
mechanism, allows you to navigate and visualize it in the interface. An example of how 
candidate mechanism are displayed is shown below: 

This example has been generated by submitting a gene set of FOXA2, TH, BCL2L1, NGF in 
the context of Parkinson‘s. In the visualization site, „alpha synuclein toxicity“ was selected 
as a biological process. Here, PITX3 is suggested to be the key player in this particular 
mechanism. 
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NeuroMMSig Derived Hypotheses

AETIONOMY disease hypotheses to be tested are represented as networks and stored in 
NeuroMMSig. The system is developed to enable patient subgroup stratification based on 
multimodal and multiscale patterns that indicate a perturbation of mechanisms. A small 
description of some of the proposed mechanisms is depicted in the Table on the right.
The process of neuroinflammation and the immune system are involved in the pathology 
of both, AD and PD (Table 1). In fact, there are currently other IMI projects, such as the 
PHAGO project, trying to target key players in AD within these biological processes. For 
that reason, NeuroMMSig has been enriched with mechanistic subgraphs related to these 
two processes such as chemokine signaling, cytokine signaling, interferon signaling, toll 
like receptor, inflammatory response, and immune system response subgraphs. These 
subgraphs contain biomarkers selected from WP5 such as YKL-40, TLR4, and MRP14. 
Having these biomarkers in the subgraphs will allow testing the generated hypothesis 
once the clinical studies have been carried out. The clinical measurements can be mapped 
to nodes in the networks calculating a score for each patient enabling patient subgroup 
identification. Since NeuroMMSig is inherently multimodal, not only the biomarkers will be 
mapped but also other indices like imaging features or metabolites.
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The use of knowledge graphs representing pathophysiology mechanisms for the 
stratification of patient subgroups is a non-trivial undertaking. Whereas the clustering of 
clinical data can identify patterns of clinical readouts, that can be tested in independent 
clinical data sets for their ability to stratify patients according to the identified pattern, 
a mechanism candidate needs first to be mapped to variables in clinical data and the 
significance of the values for the mapped variables needs to be estimated or calculated 
(e.g., based on thresholds). In the case of discrete variables (e.g., SNPs), the absence or 
presence of a SNP can be scored. SNPs are likely to be the most frequently used variables 
to be mapped, as they are routinely measured in research cohorts such as ADNI and PPMI 
and they are widely used to strategy patient (risk) subgroups. As single SNPs may not be 
directly “mappable” (because e.g., SNPs linked to mechanisms have not been measured 
in a study cohort due to different technology platforms for SNP detection), methods for 
the assignment of SNPs to loci have to be applied. NeuroMMSigDB entries come with 
a LD-block annotation, which allows for definition of loci and a mapping of SNPs in 
NeuroMMSigDB mechanisms to SNPs measured in cohorts via LD-blocks.
Some NeuroMMSigDB entries comprise disease stage annotations and such association 
can be used as a partitioning concept (which, however, does not go beyond the diagnosis 
of the clinical experts recruiting the patients in the cohort). However, if combined 
with other modalities (SNPs, imaging readouts), the stage-specific assignment and the 
mechanistic context may gain an explanatory potential that would trigger more in-depth 
analysis of that mechanism and its role in stage-specific phenotypes (e.g., certain neuro-
psychological assessments; progression patterns; biomarker trajectories). We expect to get 
more insights in the possible mapping of candidate mechanisms to disease stages during 
the validation against independent cohort data.
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CHOSEN CANDIDATE 

MECHANISMS AND ANALYSES

DISEASE 
HYPOTHESES

An essential activity in AETIONOMY is to generate hypotheses about multiscale 
mechanisms of neurodegenerative pathophysiology. Conceptually, we identify and 
organize disease specific features, at different scales, to perform data-driven analysis. 
This analysis serves to identify robust combinations of features that correspond to disease 
subtypes. The mechanisms of neurodegenerative pathophysiology, that distinguish the 
disease subtypes – referred to as our hypotheses – are being tested, iteratively elaborated 
and validated, through data generated by apposite patient studies. On a more strategic 
and methodological level, the overarching goal is therefore to develop an investigative and 
procedural blueprint that is generally applicable to disease taxonomy efforts also in other 
therapeutic areas. 

NeuroMMSig characterizes more then 200 candidate mechanisms for both the diseases 
for Alzheimer’s and Parkinson’s disease including the AETIONOMY in-silico computed and 
clinical hypotheses, which are listed in the following enumeration showing also overlaps 
between AD and PD: 

The analysis of candidate mechanisms follows the following plan:
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LINKING MECHANISMS TO 

DISEASE RISK

IN SILICO 
VALIDATION

We tried to  better understand the role of NeuroMMSig mechanistic hypotheses in the 
context of the transition from cognitively normal or mild impaired stage to Alzheimer‘s 
Disease. For this purpose we developed a highly predictive machine learning model for 
pre-symptomatic patients, which scores the risk for an individual patient to transit to 
Alzheimer’s Disease. In a second step we then linked the predictive factors in the model to 
NeuroMMSig mechanisms (Figure below). 

Where do we see the value? Early diagnosis of AD is essential for successful disease 
management and chance to attenuate symptoms by disease modifying drugs. In the past, 
a number of cerebrospinal fluid (CSF), plasma and neuro-imaging based biomarkers have 
been proposed. Still, in current clinical practice, AD diagnosis cannot be made until the 
patient shows clear signs of cognitive decline, which can partially be attributed to the multi-
factorial nature of AD. Having a predictive model, which allows to assess an individual’s risk 
to transit from a pre-symptomatic situation to AD could thus be of high relevance.

Our model integrated rich genotype information (including newly developed SNP functional 
pathway impact scores), neuro-imaging (volume measurements of brain regions, PET scan 
results) as well as clinical data from 900 normal and MCI individuals extracted from the 
Alzheimer’ s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/), a large scale 
observational study started in 2004 to evaluate the use of diverse types of biomarkers 
in clinical practice. A second aim of this work was to better understand the biological 
mechanisms driving the conversion of normal/MCI into AD pathology, which may ultimately 
open the door to novel therapeutic options. To this end, we employed a combination of 
data driven probabilistic and knowledge driven mechanistic approaches. More specifically, 
we used Bayesian Networks to uncover the interplay across biological scales between 
genetic variants, pathways, PET scan results and neuro-imaging related features. Together 

with manually 
curated cause-effect 
chains extracted from 
the literature, this 
allowed us to partially 
reconstruct biological 
mechanisms that 
could play a role in 
the conversion of 
normal/MCI into AD 
pathology.
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PATIENT STRATIFICATION DERIVED FROM DISEASE 

RISK MODEL

AETIONOMY disease hypotheses to be tested are represented as networks and stored in 
NeuroMMSig. The system is developed to enable patient subgroup stratification based on 
multimodal and multiscale patterns that indicate a perturbation of mechanisms. A small 
description of some of the proposed mechanisms is depicted in the Table on the right.
The process of neuroinflammation and the immune system are involved in the pathology 
of both, AD and PD (Table 1). In fact, there are currently other IMI projects, such as the 
PHAGO project, trying to target key players in AD within these biological processes. For 
that reason, NeuroMMSig has been enriched with mechanistic subgraphs related to these 
two processes such as chemokine signaling, cytokine signaling, interferon signaling, toll 
like receptor, inflammatory response, and immune system response subgraphs. These 
subgraphs contain biomarkers selected from WP5 such as YKL-40, TLR4, and MRP14. 
Having these biomarkers in the subgraphs will allow testing the generated hypothesis 
once the clinical studies have been carried out. The clinical measurements can be mapped 
to nodes in the networks calculating a score for each patient enabling patient subgroup 
identification. Since NeuroMMSig is inherently multimodal, not only the biomarkers will be 
mapped but also other indices like imaging features or metabolites.
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UNSUPERVISED JOINT AD/PD PATIENT 

CLUSTERING

AETIONOMY aims to establish a molecular disease  taxonomy of neurodegenerative 
diseases. At its core this  goal implies the existence of molecularly defined patient sub-
groups, which could diverge from the current classification of neurodegenerative diseases. 
As outlined above, AETIONOMY has taken a knowledge driven approach to define AD 
and PD disease mechanisms. The question is whether these mechanisms can - possibly 
in combination - discriminate patient sub-groups and specifically help identifying mixed 
AD/PD subtypes. The latter would call for a substantial revision of the way, in which 
neurodegenerative diseases are understood at present.

In order to address these questions, partners UCB and Fraunhofer have established a 
data mining methodology to group AD and PD patients using SNP based genotypes and 
shared AD/PD mechanisms derived from BEL encoded knowledge graphs. This mechanism 
enhanced approach involves a mapping of SNPs to genes encoded in shared molecular 
mechanisms and dimensionality reduction (e.g. autoencoder networks) followed by 
clustering with mixture of autoencoders and sparse Non-Negative Matrix Factorization. 
Our method has been applied to a merged ADNI and PPMI dataset, which contains de 
novo AD/ PD patients and those, who converted into AD during the course of the study. 
Identified clusters were well separated, statistically stable and showed (after correction for 
age, ethnicity and gender effects) statistically significant differences w.r.t. clinical features 
in AD, such as inter-cranial volume measurements. The validation of the established 
grouping in comparison to genotypes of healthy controls, patients from the independent 
ROSMAP cohort (AD) and different PD studies (AETIONOMY PD, ICEBERG PD, DIGPD) 
is currently ongoing. Additional available omics data from ROSMAP (proteomics, 
DNA methylation, CHIPseq, gene expression) and AETIONOMY PD (proteomics, DNA 
methylation) will be used to understand differences between genotype based clusters and 
to provide a biological contextualization. We expect the work on joint AD / PD patient 
clustering to go on after the end of the funding for AETIONOMY in 2019.

UNSUPERVISED PD PATIENT CLUSTERING

Following an alternative approach partner ICM is currently developing a Non-Negative 
Matrix Trifactorization method to cluster PD patients in the DIGPD cohort based on 
genotype. The approach in particular considers the grouping of SNPs into genes, which 
fall into the same NeuroMMSig mechanism. Based on the developed method an initial 
grouping of PD patients has been established and is currently validated using different PD 
studies (AETIONOMY PD, ICEBERG PD). We expect this work to continue after the end of 
the funding period for AETIONOMY.
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VIRTUAL DEMENTIA COHORT (VDC)

One major limiting factor for the generation of mechanism-based taxonomies is the 
accessibility and availability of relevant patient-level data. The challenge starts already 
at the level of study design and patient recruitment. Whereas patient recruitment 
and biomaterial sample collection is comparably simple and straightforward in the 
area of systematic autoimmune disorders (taking blood samples is a procedure 
commonly accepted by patients), the situation is fundamentally different in the case of 
neurodegenerative disease research. Spinal taps require patients to accept that a needle is 
inserted into their spine and CSF needs to be collected repeatedly in longitudinal studies 
aimed at monitoring progression. Furthermore, the fact that an “elevated biomarker level” 
may indicate an increased risk to develop a neurodegenerative disease without a real 
chance to treat that disease prevents both, potential patients, as well as healthy controls 
from enrolling in studies. 

This shows already in the comparison between the two projects working on mechanism-
based taxonomies: during the runtime of the project, AETIONOMY could only recruit 
a substantially smaller number of patients and only in one disease area (Parkinsonism), 
whereas PRECISESADS was able to recruit for all autoimmune diseases and in much 
larger numbers.  The consequences for research on neurodegeneration are dramatic: the 
number of “referential studies” with sufficient statistical power is very limited. In essence, 
there are 4 major studies published for Alzheimer´s Disease: ADNI AddNeuroMed, AIBL, 
and Rosmap, the associated data can be accessed after authorization by the data owners 
(usually a committee of the consortium that runs the study). In the area of Parkinsonism, 
the most widely recognized study is the PPMI (Parkinson Progression Marker Initiative) 
study; the only study that may be comparable to PPMI (by both, size and longitudinal 
aspects) is the Oxford Parkinson Disease Center (OPDC) discovery cohort.
 
The strong dependency on ADNI in the Alzheimer area and PPMI in the field of 
Parkinsonism results in a strong publication bias when it comes to data-driven analyses 
using patient-level data. The ADNI consortium is co-author on more than 1100 
publications; however, there is neither a systematic comparison between the major 
AD studies, nor is there an independent “validation” data set that has been generated 
completely independent from ADNI. Whether AddNeuroMed and AIBL could serve as 
such “independent validation data sets”, remains to be shown. At least with respect to 
ethnicity, all these studies are heavily biased towards Caucasian haplotypes.  
 
To overcome hurdles to access patient data for the in-silico validation of disease 
mechanisms and ultimately a first validation of a mechanism-based taxonomy of 
neurodegenerative diseases, we developed the concept of Virtual Dementia Cohorts 
(VDCs). VDCs are synthetic (artificial) data sets that share features and characteristics 
of real-world study cohorts in the area of neurodegenerative diseases. VDCs bear 
the potential to overcome some of the substantial challenges we face in translational 
neurodegeneration research, namely the:
• sharing of patient-level data without compromising patient data privacy
• blending and merging of heterogeneous, complex clinical data sets
• increasing the number of virtual patients to match statistical requirements 
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• post-hoc enrichment of limited clinical data with additional features 
• integration of data and knowledge
• ability to address counterfactual questions 
• computing of “what-if” scenarios
• ability to simulate trials in silico
• ability to “play with data” in the sense that modelers and miners can test new 

methods

Like real-world clinical studies, VDCs may have a time dimension and can thus reflect 
disease progression. A fully validated VDC will generate patient trajectories, which 
resemble those observed in real patients. This includes biomarkers, e.g. CSF protein 
markers, as well as neuro-imaging related features such as volumes of different brain 
regions. A VDC therefore represents the multi-modal and multi-scale nature of neuro-
degenerative diseases. This opens the opportunity to mine VDCs in the future: For 
example, we may want to use VDCs to cluster patients with respect to their disease 
progression, and characterize these groups with respect to non-common genetic 
variants. Due to the possibility to simulate as many virtual patients as desired there 
are no principal limitations of statistical power. Of course, findings derived from VDCs 
constitute only hypotheses and will require further validation using data from real 
patients. However, these validation studies could be much more focused than current 
approaches. For example, they could concentrate on testing only a handful of SNPs, which 
have been previously identified from a VDC analysis. One potential way to improve on 
the representativeness of studies is the “blending” with other, related studies and the 
“enrichment” with additional information from focused observations. Such enrichment 
and blending would result in a widening of the variable space describing subjects that may 
potentially develop signs and symptoms of neurodegenerative diseases over time and the 
enrichment of these variables with values specific for a wider spectrum of subjects (not 
only by ethnic background, but also by lifestyle, education, nutrition etc.) would be highly 
desirable in order to be able to generalize findings from major studies such as ADNI or 
PPMI. 

SIMULATING VIRTUAL BRAIN CONNECTOMES

Research in structural and functional neuroimaging showed altered brain connectivity in 
AD. In this study, we investigated the whole-brain resting state functional connectivity 
(FC) and structural connectivity (SC) of the subjects with AD, LMCI, EMCI and NC from the 
ADNI database. 
ADNI is an ongoing, longitudinal, multicentre study designed to develop clinical, imaging, 
genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer’s 
disease. Although, ADNI is multi feature and contains different range of MRI sequences, 
but for most of the patients the dataset is not complete. 
In this project, we filled these gaps using personalized large-scale brain network modelling 
(The Virtual Brain (TVB)) and completed the ADNI database. Statistically, from 244 
selected patients after quality check, only 12 of them have complete dataset. Due to 
the importance of a complete data set comprising anatomical and functional for each 
individual, we aimed to complete the dataset by simulating the missing parts. 
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It has been demonstrated that the correlation structure of spontaneous BOLD fluctuations 
(FC) relates to the underlying anatomical circuitry as obtained by diffusion tensor spectrum 
imaging (DTI).  Nevertheless, how FC relates to the anatomical connectivity and brain 
dynamics various methods have been proposed and all are effective and complementary. 
Here, we consider both linear and nonlinear models to understand structure-function 
relationships and having complete set of features for every subject. 
In this study, for completing the imaging data of ADNI like patient cohort, we have used 
two models. The first model to make data completion is a linear system of stochastic first 
order differential equations, the connectome-based Ornstein-Uhlenbeck process of TVB. 
Additionally, for capturing the nonlinearity of the system which may have direct relation with 
the pathology of Alzheimer’s disease, we used a connectome-based mean-field whole brain 
model based on the Wong-Wang local dynamics.

We proposed a whole-brain computational approach to model the whole-brain structural 
and functional connectivity of each subject by TVB. All analyses and simulations were carried 
out using connectivity matrices based on a 96-brain parcellation. In Fig. 1 the TVB pipeline 
for completing missing data in ADNI has been illustrated.
As a first step, tractography was performed using data from DTI and by using T1 images 
and implementing the 96-brain parcellation, the SC matrices for each subject were built. 
For constructing the FC matrices, after preprocessing the fMRI images, the parcellation 
were implemented in order to reach BOLD signals. Afterwards, by calculating the Pearson 
correlation coefficient of signals, the FC matrices were built. 
At the second step, the simulation and parameter fitting were performed on 12 subjects for 
Ornstein-Uhlenbeck process and Wong-Wang model. By linear Ornstein-Uhlenbeck process 
we could simulate SC from FC and when SC were missing and vice versa. As it is illustrated in 
Table 1, we could virtualize FC of 76 patients from their SC and SC of 156 patients based on 
their FC. 
The Wong-Wang model was used for the simulations of the group of patients, for which 
their functional data were missing in order to simulated their BOLD signals besides having 
more sophisticated FC and FCD matrices.

We developed methods to compute the missing data on basis of the available data, and for 
that one of connectivity matrices, either functional or structural is necessary. Metrics applied 
in this study are Functional Connectivity Dynamics (FCD) of simulated and empirical time-
series. 
In this project, using the linear approach of TVB with an Ornstein-Uhlenbeck process, we 
could systematically complete the missing data in ADNI. This pipeline is built symmetrically, 
meaning that SC can be reproduce from FC or FC can be predicted from SC. Furthermore, 
using the nonlinear approach of TVB with Wong-Wang model, we could reach the same 
target in a different way. The advantage of linear approach is that it is computationally less 
costly, which shows its importance when working with big data, however, by nonlinear 
approach we took advantage of its realistic simulation for pathological studies on AD. It 
worth to mention that in nonlinear approach besides simulating FC from SC, we can simulate 
the BOLD time-series which is necessary for constructing FCD as a plausible biomarker of AD. 

In order to verify the quality of the reconstruction, we use the 12 available subjects, for which 
both empirical structural and functional information are available. The similarity of simulated 
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data to empirical had up to 0.45 correlation, which is a confirmation of the level of accuracy 
of the simulation. 
In line with the idea of symmetry in the pipeline, this is desirable for future work 
to investigate the nonlinear simulation of SC from FC by Effective connectivity. We 
demonstrated data completion is feasible when one of the structural or functional data is 
missing and we have solved the problem by filling all the gaps. The ADNI database has been 
now extended from 12 complete data sets to 156 comprising DTI, MRI and fMRI data. 

MULTI-SCALE LONGITUDINAL MODELS FOR 

VIRTUAL COHORTS

In addition to simulating virtual brain connectomes, UCB and Fraunhofer have recently 
developed a method to model longitudinal clinical cohorts across biological scales and 
different biological and clinical modalities. The key idea is to represent a longitudinal clinical 
cohort as a Bayesian Network model. Since Bayesian Networks are generative models 
representing a multivariate statistical distribution they can subsequently be used to generate 
virtual patients. Moreover, Bayesian Networks can be used to make predictions. That means 
they can also be used for prognosis purposes.
There are a number of non-trivial challenges associated:
• Data in clinical studies often contains missing values, which are not entirely random, 

but could be correlated with a specific reason (e.g. patient drop out due to symptom 
worsening)

• Data in referential clinical cohorts, such as ADNI and PPMI is high dimensional, 
specifically, if genotype information is considered.

• Bayesian Network learning is NP hard. The identification of the true causal network 
structure is therefore statistically and computationally extremely challenging.

We addressed these challenges via the following approach:
1. Explicit modeling of missing data via auxiliary variables.
2. Splitting of original variables into informative groups and non-linear dimensionality 

reduction using deep autoencoders within each group. The result is a group-wise score 
for each individual patient.

3. Constraining Bayesian Network structures via prior knowledge. 

The TVB pipeline for completing ADNI data.
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Figure 1: Edges allowed in Bayesian Network (BN). The graph illustrates allowed 
dependencies between six groups of features (Biological, Non-motor, Imaging, UPDRS, 
Patient, Medical History ). The BN was hence restricted to pick edges only out of the set of 
depicted dependencies
 
As an example, Figure 1 shows allowed edges between defined variable groups in PPMI. 

Different algorithms for learning the Bayesian Network structure were used and compared 
with each other via cross-validation. Subsequently, our approach was tested in different 
ways:
1. Assessing the prediction performance: Is the model able to predict a group level score 

(e.g. UPDRS) for a patient, which has not been used to train the model?
2. Which edges appear stable, if the Bayesian Network is repeatedly (here: 1000 times) 

learned, if patients from the training data are re-sampled by replacement?
3. Using the Bayesian Network as a generative model, do virtual patients look reasonable 

similar to real patients? In particular: Can dissimilar patients be identified? Can a general 
purpose classifier (e.g. a Random Forest) discriminate between real and virtual patients?

Figure 2 below gives an impression of stable edges, which we identified with our Bayesian 
Network approach in PPMI. Each edge connects two variable groups. Each variable group 
aggregates different features (e.g. non-motor symptoms), and within each group the relative 
impact of original variables can be assessed.

Figure 2: Stable Bayesian Network features learned from PPMI. 
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Figure 3 demonstrates the ability of our model to make disease prognosis. The plot shows 
the cross-validated accuracy for predicting cognitive impairment of ADNI patients as a 
function of time.

Figure 3: cross-validated accuracy for predicting cognitive impairment of AD patients at 
different visits. Predictions were always made for each patient in the test set by taking all 
data for the same patient up to the previous visit as evidence. At baseline all other baseline 
variables (except for cognitive impairment scores) were used as evidence.

Figure 4 visualizes the distribution of real PPMI and virtual PD patients in a multiple-
correspondence analysis plot. No visual discrimination between real and virtual patients is 
possible, but based on statistical tests a few virtual patients can be identifed as potential 
outliers compared to the distribution of real patients. Further validations using the approach 
described above are still ongoing.

Figure 4: multiple correspondence analysis plot of real and virtual patients. Potential outliers 
compared to the distribution of real patients are marked in green.
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